A FASTALGORITHM FOR PARALLEL COMI'UTATION OF MULTIBODY
DYNAMICS ON MIMDPARALLEL ARCHITECTURES

Amir Fijany®, Gregory Kwan? | and Nader Bagherzadeht

*Jet I'repulsion laboratory, California institute of Technology

1I)opartment of Electrical and Computer Engineering
University of California, Irvine

Abstract

in this paper the implementation of a parallel
O(l.og N) agorithm for computation of rigid multi-
body dynamics on a Hypercube MIMD pardlel archi-
tecture is presented. To our knowledge, this is the
first agorithm that achieves the time lower bound of
O(lLogN) by using an optimal number of O(N) pro-
cessors. However, in addition to its theoretical signifi-
cance, the algorithm is also highly efficient for practi-
ca implementation on commercialy available MIMD
parallel architectures due to its highly coarse grain
size and simple communication and synchronization
requirements. We present a multilevel parallel com-
putation strategy for implementation of the agorithm
on a Hypercube. This strategy allows the exploitation
of parallelisin at several computational levels as well
as maximuim overlapping of computation and commu-
nication to increase the performance of parallel com-
putation.

J. Introduction

Themultibody dynamics problem concerns the de-
termination of the motion of the mechanical system
resulting from the application of a set of control forces.
In the context of robotic applications, the problem is
more known as forward dynamics problem. In this pa-
per we consider a multibody system with a serial chain
topology. However, our results can be extended to sys-
tems with other topologies, e.g., closed-chain topology
[1,2].

In brief mathematical terms, the multibody dynam-
ics problemcan be stated as the solution of a linear
system

® Q=7 -b(8,Q.Fg)=Fr, or
Q=M1Fr 1)

The vector b(8,Q, Fg) represents the nonlinear terms
which can be computed by using the recursive
Newton-Fuler (N-E) algorithm (3] while setting the
vector of joint accelerations, Q, to zero. In
Eq. (1), Fr=7- b(O,Q)Qcol{M-.-}s?RN represents
the acceleration-dependent component of the control
forces.

At present it seems that the development of seria
algorithms for the problem has reached a certain level
of maturity. These agorithms can be classified as the
O(N3) dgorithm [4], the O(N?) algorithm [5], and
the O(N) agorithms [6-9]. However, despite the sig-
nificant improvement in efficiency of seria agorithms,
even the fastest algorithm is still far fromproviding
the real-time or faster-than-real-time simulation ca-
pability. This suggests that any further significant
improvement in computational efficiency can only be
achieved through exploitation of parallelism.

The development of efficient parallel algorithms for
multibody dynamics is a rather challenging problem.
It represents a very interesting example for which the
analysis of the efficiency of a given algorithm for par-
alel computation is far different and more comnplex
than that for serial computation. In fact, our previous
analysis [10,1 1], which is also supported by the results
of this paper, clearly indicate that those algorithms
that are less efficient (in terms of either asymptotic
complexity or number of operations) for seria com-
putation provide a higher degree of paralelism and
hence are more efficient for parallel computation.

A preliminary investigation of paralelism in com-
putation of the problem by analyzing the efliciency
of existing agorithms for paralel computation is re-
ported in [10]. The main result of this investigation
canbe summarized as follows.

1. The existing O(N) agorithms are strictly serid,
that is, their parallelization results in O(N) par-
alel agorithms which are faster than their serial

N

P
c(i.i4 1)
my

Jy

h,‘, k,’
MeRN =N
b;, Qi Qi

T,
Wi, JJ,‘E?RB

vy, ir,-sﬂ?"’

fi, nyeR®

Nomenclature

Number of Degrees-Of- Freedom
(D OF) of the system

Cost of multiplication and
addition

Position vector from Oj;to Oy,
Pi4 1= Pi

3 x 3 matrix describing the
orientation of frame i+ 1 with
respect to frame i

Mass of link i

Second moment of mass of linki
about its center of mass

First and Second Moment of mass
of link i about point O,
Symmetric Positive Definite (SPD)
inass matrix

Position, velocity, and acceleration
of joint i

Applied (control) force on joint i
Angular velocity and acceleration
of link i

Linear velocity and acceleration
of link i (pointO;)

Force and moment of interaction
between link i-1 and link i

Spatial Quantities

Ci, 14 1)eRs=o

H; Spatial axis (map matrix) of
joint i, H;eR%** for a joint
with k DOFs

A 6 x 6 matrix used for pro-

jection of spatial vectors, given

in frame i 41, onto frame i

Clii+ 1) =

clii+1) 0
elii+ 1)

[0

Vo= [
Fi = [f’l

1"[;5\‘3?6

Q2 cal{ Qi}eR™

o)

1; jeR°*®Spatial Inertia of body i about

Wi
Uy

J cRo

point O, lii=1,

I = [!”' hy

T iU

(" denotes transpose)

Spatial acceleration of link i

1 <R°Spatial force of interaction

between link i-1 and link i

Fxternal spatial force acting
on the End-Effector (ELE)

Global Quantitics

M £ diag{H;} Global matrix of spatial

0 £col{f;}eRN

L

T

ne

7 £ diag{J;}eRONxeN

axes, HeR®N *N for a
system with 1 DOF joints.
Global matrix of spatia
inertia, i =N to1l

Global Vector of joint
positions, i = N to 1

Global vector of joint
velocities, i = Nto1l

col{Q:}eRN Globa vector of joint
accelerations, i = Nto 1
coi i} RN Global vector of applied
joint forces, i = Nto1l
V £ col{V,}eRY Global vector of spatial
accelerations, i = N to 1

X 2 col{ Fi}eR®N

Global vector of spatial
interaction forces, i = N to !

¢, : Center of Mass of Body |

Figure 1. Body, Frames, and Position Vectors

counterparts only by asmall constant factor.

2. Theoretically, the time lower hound of O(l.04° N)
can be achieved by paralel ization of the O(N3)
algorithms by using O(N?®) processors.

3. Practically, the best parallel algorithm results
from paralielization of the O(N3)algorithm by
using a two-dimensional array of O(Nz)procos-
s0TS.

1 heanalysis in 101 also led to two important con-
clusions The first was that, if indeed there can be
a both time and processor-optimal paralel algorithm
for the problem, i.e., a paralel algorithm achieving
the time lower bound of O(l.og N) with O(N) proces-
sors, then this parallel algorithm can only he derived
by parallelization of an O(N) serial agorithm, Since
the existing O(N) algorithms are strictly serial, the
second conclusion was that the first step towards de-
veloping such an optima paralel agorithm is to de-
vise new O(N) agorithms with efficiency for parallel
computation in mind. Such algorithms can only be
derived by a global reformulation of the problem and
not an agebraic transformation inthe computat ion of
existing O(N) algorithms.

Physically, a given algorithm for multibody dynam-
ics can be classified based on its force decomposition
strategy. Mathematically, the agorithm can he clas-
sified based onthe resulting factorization of mass ma-
trix which corresponds to the specific force decompo-
sition (see [1 1,12] for a more detailed discussion). A
new agorithm based on a globa reformulation of the
problem is then the one that starts with a different
andnew force decomposition strategy and results in a
new factorization of mass matrix.

Interestingly, a recently developed iterative algo-
rithm in [13, 14] represents such a globa reformula-
tion of the problem. It differs from the existing O(N)
algorithms in the sense that it is based on a different
strategy for force decomposition. We have shown that
this strategy leads to a new and completely different
factorization of M-I [1 1,12]. ‘I'his factorization, in
turn, results in a new O(N) algorithm for the problem
which is designated as the Constraint Force(CF) al-
gorithm. A sdlient feature of the CF algorithm is that
it is strictly efficsent for parallel computation, that is,
it is less efficient than other O(N) algorithms for serial
computation but it can be fully parallelized leading to
aboth time and processor-optimal paralel algorithm
for the problem, i.e, a parale O(L ogN) algorithm
with O(N) processors.

This parallel algorithm- in addition to being theo-
retically significant by proving, for the first time, the
existence of a both time and processor-optimal par-

alel algorithm for the pro blem- is aso highly prac-
tical from an implementation point of view. This is
due to its large grain size and simple communication
and synchronization reguirements. This paper is orga-
nized as follows. in §11, we briefly review the CF algo-
rithm. Serial implementation of the CF algorithm is
discussed in §iil. The multilevel paralledl computation
of the CF agorithm on the Hypercube is presented in
§1V.Finally, some discussion and coucluding reinarks
arc madem§Vv.

Il. The Constraint Force Algorithm

A. Notation and Preliminaries

In the following derivation, we make usc of spatial
notation (shown with upper-case M AT H SITALIC
letters) and global notation (shown with upper-case
CALLIGRAPHIC letters) which lead to a compact
representation of equations. Here, only joints with one
revolute DOF are considered. However, the results
can he extended to systems with joints having different
arid/or more DOFs.

Wit h any vector v, a tensor & can be associated
whose representation in any frame is a skew symmetric
matrix:

o —Y(z) 1Y)
v = U(’Z) 0 “l'(r)
[~Uy) Vo) 0 1

where vz, v(yy, and v, arc the components of vin
the frame considered. The tensor & has tile properties
that o7 = —p and 9,vy, = vy xvg, €., it iS A vector
cross-product operator. ThematrixV associated with
the vector u is defined as

S |U v st _ U 0] ners
V__[O U] and V "[-f,» U]VJ\

where here (as well as through the rest of the paper)
U'and O stand for identify and zero matrices of appro-
priate size. The spatial forces acting at two points .4
and B on a rigid body are related as

Fg = PasFa

where p4.p denotes the position vector from 3 to .-1.
If the linear and angular velocities of point A are zero
then) R o

Va=(Pan)"Vs

The matrix Pa.p has the properties as Pa.pPr.c=
Pac and (Pag) '=Pp.a.

The spatia inertia of link 7 about its center of mass,
I; ¢4, is given by

P J" 0 _p6r6
lici= [0 m,'U] R

The spatial inertia of body i about point O;(desig-
natedas/;) is obtained as

. - U s [0 U 0
_ o .'17 _ 1 t
o= SilieiSi = [o UJ [0 m.-U] [—s‘.- U]

ki hy
- [71,7 m;U])
This represents the parallel aristheorem for propaga-
tion of spatial inertias.

In deriving the equations of motion, it is assumed
that the nonlinear term 6(0, Q, Fg) is explicitly com-
putedby using the recursive N-E algorithm. Similarly
to the O(N3) and O(N?) algorithms [10,13], the ex-
plicit computation of (8, Q, Fy;) provides additional
parallelism in the present algorithm which can be ex-
ploited to further increase the speedup in the compu-
tation,

having computed the term &(8,Q, Fg) and subse-
quent ly Fr in Eq. (1), the multibody system can be
considered as asystem at rest which, upon the ap-
plication of control forces F7, accelerates in space.
Accordingly, the linearized Newton-Euler equation of
motion for rigid body iin the seria chain (Fig. 1) is
given by o ‘

Vi=PT Vi, + HiQ: ©)

Fi = LiVi+ PiFig, @)

B. Interbody Force Decomposition
Strategy

The iterative algorithms developed in [14,15] are
based on a decomposition of interbody force of the
form:

Fi-H;Fpy + W; Fg; (5)

where Fsi is the constraint force and Wi is the orthog-
onal complement of Hi [16,17], i.e.

WTH;=0 (6)

For joint i with multiple DOFs, say & < 6 DOFs,
HieRO*% and WieRS*(C=8) |ngofar as the axes of
DOVFs are orthogonal (which is the case considered
in this paper) the matrix Hi is a projection matrix
[16] arid hence

HIHi= (7)

It then follows that the matrix Wi is also a projection
matrix, i.e,

wrw,=U (8)

An example of structure of matrices f; and Wi for
one-DOF revolute joint is given in §111. For a more
detailed discussion on these matrices see [16,17].

The decomposition inkq. (5) secins to be more
natural (and perhaps more physically’ intuitive) than
thatof the Articulated- Body Inertia (A BI) algorithm
(Eq.(26)n[6])since it expresses the interbody force
in terms of two physical components: the control
(or working) force and the constraint (or nonwork-
ing) force. That such a force decomposition has not
been considered as a viable alternative for deriving
algorithms for direct serial and parallel solution of
the problem is not surprising. The decomposition in
Eq. (5) naturaly leads to the explicit computation of
the constraint (and inter body) forces which has mo-
tivated the designation of the agorithm as constraint
force algorithm. Indeed, researchers have often argued
that since the constraint forces are nonworking forces,
their explicit evaluation, which leads to the computa-
tional inefficiency, should be avoided. however, while
this argument is in general valid for serial computation
(which is aso supported by our results), the explicit
computation of the constraint forces, as shown below,
results in highly efficient paralel algorithms for the
problem.

C. A Schur Complement Factorization
of M~1

In [1 1,12], we have shown that the force decompo-
sitionin Eq. (5) leads to a new factorization of M ™!
as well as a new O(N) algorithm for the problemn.
Here, for the sake of completeness, this factorization
of M1 is briefly discussed.

First, let us rewrite Eqs. (3)-(4) as

Vi- PL\Vier = HiQ (9)
Fi—= PiFiyy = LV, (10)
and define a lower bidiagonal block matrix P as
U
~Pynoa u
- 8 _PS_Z u E%GNXGN
@] 0 e, U

Let us also define following globa vector and matrix
as

Fs & col{Fs.-}E%‘r’N
and
w £ diag{W;}eRON**N i = Nmboxto)

Equations (9)-(10) and (5)-(8) can now be written in
globa form as ']
PTV = HQ (12)

PF =1V (12)
F=HFp + WFs (13)
H'W=0W"H = O0NTH = U,andW'W=U
(14)
FromEqs. (11), (12), and (14) it follows that
vV =I"'PF (15)
WIPTY =wWiHQ = 0 (16)

and from Egs. (15)-(16), we get
WIPTI-'pp =0 (17)
Substituting Eq. (13) into Eq.(17) yields
WIPTI-'P(HFr + WFs) = 0
S>WIPTI-'PW Fo = -WTPTI-'PHEL (18)

or,
AF g = ~BFr (19)

where matrices A2 WTPTI-1PWRSN¥SN and
BEWTPTI-'PHRSN*N are block tridiagonal. By
computing Fs from Eq.(18) and substituting it into
Fq. (13), we get

F o= (HWWTPTT-'pw) ' WIPTI-1pi) 7y

(20)
and substituting Eq. (20) into Eq. (15) leads to
V= I"P(’H - WWTpTz-1pw)-!
wipiz 1 mg Fr (21)

From Eqgs. (11) and (14), Q is computed as
HTHQ = HTPTV = Q =HTPTY (22
Finaly, by replacing Eq. (21) into (22) it follows that

Q :('HT’PTI"PH -HTPTI-'PW

WTpPTI-'Pw)- ‘WTPTI"“PI:g Fr (23)
which represents a compact operator form of the O(N)
CF agorithm. In comparison with Eq. (1), an opera-

tor form of M~!, in terms of its decomposition into a
set of simple operators, is given as

M-V = yTpry-1py — H'PTI™'PW

WTPTI-'PpWw)y-"WIpTz-lpy (24)

Letting C £ HIPTI-'PHRN*N M-! can now be

expressed as
M t=c-BA'B (25)

where the matrix ¢, similar to A and B, is block tridi-
agonal. Furthermore,d and ¢ are symmetric and pos-
itive definite (SPD). A proof of positive definiteness
of A isgiven in [12] which guarantees the existence of
A~'. A similar procedure can beused to prove the
positive definiteness of C.

The operator form of M1 given by Eq. (25) rep-
resents an interesting mathematical construct. ‘1’0 see
this, consider a matrix £ defined as

[A B] 6_)J‘\GN)(GN

e

L=1lpgr ¢

Then, € -- BT A-'B is the Schur Complement of d
in C [18]. The structure of matrix £ not only pro-
vides a deeper physical insight into the computation
butit also motivates a different and somehow simpler
approach for derivation of the algorithm [12].

I1. An O(N) Serial Implementation of
Constraint Force Algorithm

An efficient implementation of the CF agorithm is
based on rewriting Eq. (23) as

Qo=NTPT (U — I tpwwTpT

1'IPW)"WTI’T)Z“PHFT (26)

Here, the key to achieving greater efficiency in both
serial and parallel computation is to simply perform,
as much as possible, matrix-vector multiplication in-
stead of matrix-matrix multiplication. In this regard,
the matrices B8 and € do not need to be computed ex-
plicitly and only the explicit computation of matrix
d is needed. Given Fr, the computational steps of
the agorithm then consist of a sequence of matrix-
vector multiplications and a vector addition wherein
the matrices, except for .A~!, are either diagonal or
bidiagonal. Multiplication of a vector by matrix d*
is equivalent to the solution of a SPD block tridiagonal
system, that is, the solution of

AFs = X (27)

for s where A".é_col{i.v}s%w, i =Nto 1 and
X = BFy = WIPTI-1PHF;.

Thus far, the solution procedure has been presented
in a coordinate-free form. Before its implementation.

however, the tensors and vectors involved in the comn-
putation should be projected onto a suitable frame.
The choice of the appropriate frame and the way t hat
the projection is perforined significantly affect the ef-
ficiency of the algorithm for both serial and paralel
computation.

If the rotation of the one-DOF revolute joint i is
given about the : axis of framei then

I BN
H; »[Olcﬂl
The matrices H: and W, in frame i are given as
0 10000
0 01000
1 0O 00 0O
< fl- ‘W =

of @ W=100100
0 0 0010
0 0 00 012

Multiplication of any vector or matrix by'Hiand 1,
does not require any computation hut an appropriate
permutation of the elements of the vector or matrix.
However, in any other frame Wi is a dense matrix and
its multiplication by another matrix requires a signif-
icant amount of computations. This clearly indicates
that any projection of equations should be based on
the maximum exploitation of the sparse structure of
*W; and ‘H; .
The matrix A and its elements are given as

A = Tridiag [Bi, Ay, BL |

A= W,‘T(I.'_l + Pir,—‘llt'»-llp‘-l)m i"Ntol (28)

Bi = ~WII7'PiWig1i= N - 1tol (29)

in order to fully exploit the structure of ‘Wi, Ais
computed in frame i as

A= \V=(ii-l + P CLo) B WG (30)

By using the paralel axis theorem of Eq. (2), it can
be shown that (Fig, 1)

P17 Pi_) i (31)

That is, the tem PT | I7} Pi_1 is the inverse of the
spatial inertia of link ¢ — 1 about point O,which is
constant in frame i and hence can be precomputed.
(Note: according to our notation and Fig.1 frame i is
fixed to link ¢ — 1 at its distal end.) It follows that
the term 174+ PT 17! Pi_1in Eq. (30) is in fact the
sum of inverse of spatia inertias of link i and link i- 1
about their intersecting point O;. The paralel axis

theorem of kq. (z) can be aso used for propagat ion
of inverse of spatial inertias as

=S, L ST= 171 =(ST) -1l (shH!

Jr! A S

&I =S s+ (1/m)U (32)

Both /i and 17! are constant in frame i + 1, How-
ever, while 1, has a simple and sparse structure, I
has a dense structure. It is more efficient to first
project J7! and si onto frame i as

Fi=c(i i+ 1) H (i + 1,40) =
(37" = el i+ 1) (I te(i 4 1,4) (33
‘s,‘: c(i,i+ 1) i+ls,' (34)

and then compute (‘Ii)~' in frame i according to

Eq. (32). The computation of Bi is also performed
in frame i as follows. L.et us define

W, £ 17 PiWiyy = PP ()T R Bt gy

‘I’he matrix Vi is constant in frame i+ 1 and can be
precomputed. It is projected onto frame i as

W= CUi+)Y (35)
Then B; can be computed as
B = — "u/'fl' ' (36)

which does not need any computation buta permu-
tation of matrix 'Wi.To exploit further the sparse
structure of ‘Wi and ‘H;, the rest of the computa-
tions in Eq. (26) is also projected onto frame i.

The block tridiagonal system can be solved by both
block odd-even cyclic reduction algorithm [19-20] and
block LDLY factorization [31] in O(N) steps. How-
ever, for serial computation, the latter algorithm is
more efficient by a factor of ~2.5 [19].

The computation of the serid CF algorithm is per-
forined as follows:

Step I.Compute Fr by using the N-E algorithm in
[4] with Q = O.
Step I1. Compute X' = c ol {#}

A. Projection

1. Form ¢(¢,i 4+ 1) and C(i,i-t 1).

2. Form ‘zi41 = third column of c(, i + 1).

3. Compute (*3:)™! and *si from Egs. (33)-
(34).

4. Compute (*1;)™! from Eq. (32).

B. Compute V!
1. Compute Fr 2 col{F};} = HEpeRY
Fpg= CHikr (37)
2. Compute F} 2 col{ F},}eRN

= R - ClL)

(38
3. Compute V! £ col{*V'} = T FieRoN
A A (39
C. Compute X' = WIpTy!
1. Compute V2 £ col{iV? = pTV!
W= - Pl o -1, (40)
2. Compute X' = WT'y?
Po=t W2 (41)

Step 111. Form matrix A
A. Compute Bi.i = N~ 11to 1, from Eqgs. (35)-(36).

B. Compute 4i.i = N to 1, from Eq. (30).

Step IV. Solve AFs =X for FseR®l by using the
block . DLT algorithm

Step V. Compute Q

A Compute V3 = I-'"PWFy

1. Compute fl col{* Fi,} = WFseR¥
"Foi= 'WiFsi @2
2. Compute F22col{ F2,} = PFLeReN

VFhi= 'F&CGL i+ VORI R)
(43)

3. Compute V"écol{‘f/ﬁ} = ZI-1FZcRoN
W3 = (iii)-liF~i (44)
B. Compute Q = HTPT (V! - v3)
1. Compute V*£ col{iVj4} = (V! — V3)eReN

i"/{‘l:i"/_.'l _ iVia (45)

2. Compute V° 2 col PV} = PTyd RpoN

W= R PTG - 1R (o)
3. Compute Q =NV
Qi= ‘HI'VS (47)

The proposed scheme for seria implementation of
the CF algorithm seems to be optimal and, in fact,
it is unlikely that any further significant improve-
ment in efficiency of the algorithm can be achieved.
However, despite this optimal implementation, the
CF agorithm is less eflicient than other algorithms
for serial computation. Note that Step | is com-
mon to both the CF algorithm and the ABIlalgo-
rithin. Excluding its cost, the computational cost of
the CF algorithm is (695m+592a)N — (408m+347a)
while the cost of ABI agorithm, as reported in [6], is,
(199m+174a)N - (198m+ 173a). Hence, for large N,
the ABI algorithm is more eflicient than the CF algo-
rithm for serial implementation by a factor of ~ 3.4
(ill terms of total number of operations). Obviously,
for smal N (say N < 12), the CF algorithm is also
less efficient than the O(N?)or O(N3) algorithms.

I1V. Parallel Computation of Constraint
Force Algorithm

A. Parallelism in the CF Algorithm:
Time and Processor Bound in Compu-
tation

The efficiency of the CF algorithm for parallel com-
putation can be easily assessed by examining the steps
involved in its serial implementation. By using the
paralel algorithm of [22], Step | can be performed
in O(LogN) -t O(1) with O(N) processors. Steps 11,
111 and V are completely parallelizable since the com-
putations for each body are decoupled. Hence, with
O(N) processors, these steps can be performed with
a computational cost of O(1). The main issue in par-
allelization of the CF algorithm is then the parallel
solution of block tridiagonal system in Step IV.

As discussed before, the block L.DLT factorization
is the most eflicient serial algorithm for solution of
block tridiagonal systems. However, this algorithm
seems to be strictly seria and, in fact, there is no re-
port on its parallelization. On the other hand, the
block cyclic reduction agorithm, while not the most
efficient for serial computation, can be parallelized and
performed in O(LogN) + 0(1) steps with O(N) pro-
cessors [20].

Therefore, it can be concluded that the entire CVF
algorithm. from Step | to Step V can be performed in

O(LogN) + O(1) with O(N) processors, Thisrepre-
sents a both time and processor-opt 1mal paralel algo-
rithm for the problem.

B. Parallel Solution of SPD Block Tridi-
agonal Matrix

A central issue that affects the parallel efficiency
of the CF agorithm is the choice of parallel algorithm
for solution of block tridiagonal system. There are two
variants of the cyclic reduction algorithm: the Odd -
Even Reduction (OER) and Odd-Even Elimination
(OEE) agorithms [20]. The OEE algorithm, while
less efficient than the OER algorithm for serial com-
putation, provides additional parallelism (by about a
factor two) in both computation and communication
using the same number of processors and interconnec-
tion structure asfor OER algorithm[20]. For solution
of the block tridiagonal system in Eq. (27) the OEE
algorithm is given as follows:

Fori= Ntol, Do

A? = A, B =Bi, and #? = i (initialization)
End Do
Forj=1to M =[LogN], Do

Fori=N to 1, Do

A= AT BTN AT) y(BITYT -

. . i1
(B] -)T (AIZ,)7 Bl
(48)
B =) B
(49)
Pl o BTN ATTE)T -
i o
(B3) (A 5) 7 8]
(50)
End Do
End)o
Fori= N to 1, Do
Mp _ .M »
Solve A" F" =x; for Pu (51)

Fnd Do

where [z] indicates the smallest integer greater than
or equal to x.It should be noted that in kqs. (48)-(49)
it is more efficient to first compute the scalar {di™ fac-
torization of the dense submatrices rather than their
explicit inverses. The multiplication of the inverse of

a matrix by another matrix, e.g., (A{;;,_,)—l([;g")T

in kq.(50), can then be computed as the solution of
alinear system with multiple right-hand sides.

The parallel implementation of both the OER and
OFEF algorithms for scalar tridiagonal systems is
straightforward. However, for block tridiagonal sys
tems care should be taken to achieve the optimal ef-
ficiency. In fact, it seems that efficient implementa-
tion of eit her agorithm for block tridiagonal systems
has received less attention in the literature. Note
that an implementation strategy starts with a spe-
cific process-to-processor alocation scheme. 7o see
this, consider the paralel implementation by using N
processors, designated as ’fii.i=Nto 1, Let us fur-
ther assume a perfect mapping of the algorithm, i.e.,
a mapping on an architecture with N processors and
a Shuffle-Exchange augmented with Nearest Neighbor
(SENN) interconnection structure, There are two pos-
sible strategies for parallel implementation of the OEE
algorithm given above. In the first and more obvious
strategy the computation of Al, B!, #!, and Fsi as
well as al the intermediate terms in Eqs. (48) — (51)
is assigned to processor P Ri.Note that this strategy,
which seems to be widely adopted in the literature
for implementation of both the OFER and OFEF algo-
rithms, is optimal for scalar tridiagonal systems,

We have developed a second strategy in which the
terms 4] and r]as well as all intermediate terms
involving 4~' are computed by PR,. These two
strategies lead to two different structures for the com-
putat ion performed by each processor as well as the
communication among processors, The impact of the
two strategies on both computation and communica-
on complexity of the algorithm is discussed in [23].
It will suffice to mention here that the second strat-
egy, presented below, is more efficient for solution of
block tridiagonal systems since it leads to a dlightly
greater computational efficiency. More importantly,
it also provides a high degree of overlapping between
the computation and the communication which can be
exploited to reduce the communication overhead.

Using our strategy, the parallel implementation of
the OEE algorithm is given by:

For j = 11to M ={Log2N], Do
For i=1 to N, Do Parallel (by al PR; ‘)

1. Compute IdiT factorization of A1

(52)
2. Solve A= It = B! for ¢27)

(53)
3. Compute DI =(BI"HTCIT!

(54)

9. (‘omll)ulc _13'{1“1 = (BTHTAITY e =
(s

(:55)
5. Send ¥ ' and E!7'to P Rija-
6. Solve AJ~'F/~1=(BIZ),)T for K7
(56)
7. Compute ‘ .
GI7l = (B)TATYT BT =
(B2) F!
(57)
8. Compute
-1 . ’ HA
HI7 = i, - (A 2)-lij-l =
(FI~ YTt
(58)

9. Send G ™' and H!™' to PR;_qp-\

10. compute v _ .
(Bl =T (B YAy (o),)
=(B"YHYT'F}™!

(59)
11. Send (B)_,,..)Tt0 PR3-
12. Compute A} = Al™'-DI7) - GI7,),
(60
13. compute #}=4"' - EI7) - HIT)
(61)
14. Send (B]_,,_,)'t0 PR 4 -
(62)
End Do Parallel
End Do
Forr =1to N, Do Parallel (by al PR/‘s)
1. Compute /d/ factorization of AM
(63
2. Solve AM F,;= M for Fy;
(64

End 1)0 Paralle

As can be seen, any communication activity of pro-
cessor PR; can be overlapped by its immediate com-
putation activity. That is, communication of I»}~*
and £!'1 can be overlapped with computation of

F} - ' communicat ion of Gl Yand H;- Lean be over-
lapped with computation of (B{_,j - 1)7': and finaly
communication of (B!_,j—1)7 can be overlapped with

computation of A} and #J. This overlapping feature
is particularly suitable for implementation on MIMD
architectures such as the Hypercube since it can be
exploited to significantly reduce the communication
overhead.

C. Performance of Perfect Mapping of’
the Parallel CF Algorithm

in[11,12],we analyzed the performance of the par-
ald CF agorithm by considering a perfect mapping
of the algorithm, i.e., its implementation on an ar-
chitecture with N processors and with a SENNin-
terconnection. This analysis indicated that such an
implementation will result in a computation cost of
(732m+653a)Loga N + (h42m+439a) and a communi-
cation cost of (103 +-134a)log N2+ (63 +49«), where
J and o stand for the cost (time) of communication
start-up and the cost of communicating a single da-
tum, respectively. Note that in analyzing the commu-
nication cost the overlapping of communication and
computation is not considered,

Such a theoretical performance clearly indicates
that the CF algorithm, though not efficient for serial
computation, has excellent features for paralel com-
putation. The parallel CF agorithm not only achieves
the theoretical time lower bound of O(LogN) + 0(1)
but is also highly practical from an implementation
perspective. First, Stepsil, 111, and 1V- which have a
serial computation complexity of O(N)- can be fully
parallelized and performed in O(1) with limited near-
est neighbor communication among processors.

Second, the parallel algorithm is highly compute
bound, i.e, its communication cost is much smaller
than its computation cost. Note that the coefficient
of 3 indicates the level of communication activities
which, as can be seen, is very low. Also, as stated
before, our strategy for implementing the OEFE a-
gorithm is specifically motivated by the overlapping
capability which can be exploited to further reduce
the communication overhead. Coupled with the lim-
ted communication activities is the fact that the algo-
rithm has a rather coarse grain size since, particularly
in Steps 11-V, each processor performs a matrix-vector
operation or a sequence of such operations before com-
municating to other processors. The coarse grain fea
ture and limited communication requirements make
the CF agorithm highly suitable for implementation
on MIMD parallel architectures such as the Hyper-
cube.

D. Strategies for Multilevel Parallel Implemen-
tation of the CF Algorithm on a Hypercube

The parallel implementation of the CF algorithm
with N processors achieves an asymptotically opti-
mal parallel computational complexity and a signifi-
cant speedup for large N. However, for small N, it
offers a rather limited speedup [1 1,12], which is due
to the large coeflicient of the Logs N terms. Note that
this phenomenon represents an inherent algorithmic
property in both serial and parallel computation of
the multibody dynamics problem. That serial O(N)
algorithms, though asymptotically optimal, are less
efficient than the seriadl O(N?) or O(N3) algorithms
for small N is also due to the large coefficient of N.

“l1o increase the efficiency of the parallel CF ago-
rithm for small N, the coefficient of the Log.N term
needs to be reduced. This can be achieved by further
exploiting parallelism through a multilevel approach,
A first possible strategy is to exploit fine-grain par-
allelism in various matrix-vector operations of the al-
gorithm. However, this strategy would require the
implementation of the algorithm on special-purpose
paralle] architectures such as the one proposed in [24].

here, an alternative coarse-grain multilevel paralel
computation approach is presented which is partic-
ularly suitable for implementation on the Hypercube.
This approach is moreover motivated by the fact that,
for small N, it is likely that the number of processors
of the target architecture be much greater than N.
This naturally suggests the possibility of increasing
the efficiency of the algorithm by using more of the
processors that would otherwise be idle.

Step IV represents the most computation intensive
part of the parallel algorithm. Therefore, any effective
multilevel approach should be based on exploitation
of maximum paralelism in computation of this step.
However, as shown below, further efficiency can be
also achieved by modifying the computation of this
step so it can be overlapped with other steps of the
paralel agorithm.

The OEE agorithm given by Eqgs. (48)—(51) can be
interpreted as a procedure for diagonalization of block
tridiagonal matrix A in which a series of transforima-
tions are applied to both sides of Eg. (27), resulting
in a block diagonal system given by Eq. (51). That
is, Egs. (48)-(49)—or Eqs. (52)-(54), (56)-(57), and
(59)-(60) of our variant of OEE algorithm- -represent
the diagonalization of matrix A while Eq. (50)- or
Egs. (55), (58), and (61)-—represents the updating of
the right-hand side. Taking this perspective, the com-
putation of the OEE agorithm can be broken into two
parts: the diagonalization of matrix A4,i.e., computa-
tion of AM = col{4M}, in which the submatrices A’
and B! are computed; and the updating of the right-

10

hand side, i.e., computation of A'M =col{zM} by
using the already computed submatrices A} and £}
The diagonalization of matrix 4 and the computation
of Fr and X, i.e, Steps | and Il of previous section,
arc fully decoupled and can be performed in paralel in
an overlapped and completely asynchronous fashion.

E. A Two-Level Parallel Computation Strategy

Our first multilevel approach, which represents a
two-level parallel computation, is based on the above
decomposition of the CF agorithm. In this approach,
the CF algorithm is implemented on two groups of
processors wherein each group consists of N proces-
sors. On the Hypercube, processors numbered O to
N — 1 form the first group and processors numbered
N to 2N — 1 form the second group. The computation
of matrix A and its reduction are assigned to the first
group while the the computation of F7 and &’ are as-
signed to the second group. Since these two sets of
computation are completely decoupled, the activities
of the two groups are carried in paralel and in fully
asynchronous fashion.

Our timing results indicate that the computation
and reduction of matrix A take more time than the
computation of Fr and X'. Therefore, the overall com-
putation time is dominated by that of computation
and reduction of matrix A and the computation of
Frand X is fully overlapped, This aso implies that,
upon computation of &', the processors of the second
group have to wait for the completion of the reduction
of matrix .A by the processors of the first group,

In order to further increase, the computationa effi-
ciency, the computation of #!,i.e, Eq.(50) or Egs.
(55), (58), and (61) of our variant of the OKE algo-
rithm, is also assigned to the second group of proces-
sors. To do so, the processors of the first group, after
computing (€717 and (F7~!)T, send them to the
processors of the second group. Note that this com-
munication activity is performed asynchronously and,
furthermore, it can also be overlapped with the com-
putation. With this scheme, the computation of r]
is also mostly overlapped with the reduction of ma-
trix A. In this two-level strategy, the computation
of Eqs. (62)-(63) as well as the computation of Step
V of the CF agorithm, i.e, Eqs. (42)-(47), are also
assigned to the second group of processors.

F. A Three-Level Parallel Computation Strat-
cgy

In the two-level paralel implementation of the CF
algorithm, the reduction of matrix .4 remains the most
time-consuming part which also dominates the overal
computation time. This has motivated us to develop
a second multilevel strategy, or a three-level paralel

computation, to further speed up the computation by
exploiting a higher degree of parallelism in the reduc-
tion of matrix A.

Algorithm Time Speedup
(in ms) Absolute Rel ative
Serial 481 1.00 -
| N-Parallel 87 5.53 553 |
2N-Parallel 69 697 | 1.26
3N-Parallel 55 875 | 12|

Table |. Computation Time of Serial and
Parallel Multibody Implementation of
the CF Algorithm

In this strategy the parallel computation of the CF
algorithm is performed by using three groups of pro-
cessors. On the Hypercube, processors number O to
N — 1 form the first group, processors number N to
2N —1 form the second group, and processors number
2N to 3N — 1 form the third group, The computa-
ion of matrix d is assigned to the first group while
the reduction of matrix A is performed by both first
and second groups. This is achieved by decomposing
the computation of Eq. (48) and by using processor
PR, i <N, of the first group and processor FHi+n
of the second group for computation of .4} Note that
if N is apower of 2 (which is the case considered here)
then processors PRi, i < N, and processor PRiyn
are physically nearest neighbors (i. e, there is a di-
rect link between them), The computation of Fr, 6 X',
Fgs. (62)-(63), and Step V of the CF algorithm, are
assigned to the third group.

V. Discussion and Conclusion

We have implemented the parallel CF algorithms on
the Intel iPSC/2 Hypercube installed at UC Irvine,
This is a 32-node Hypercube with each node having
an 80386 microprocessor, an 80387 arithmetic copro-
cessor, and 4 MBytes RAM. This number of nodes
limited our implementation to the case of a multibody
system with 8 DOF (N = 8),

The computation time of serial and multilevel par-
dle CF agorithms are shown in Table I. In order
to evaluate the performance of the paralel CF algo-
rithms, we have implemented the serial algorithm of
§I11 on one node of the Hypercube. As can be seen,
the N-Parallel implementation of the CF algorithm
on such MIMD architecture results in a rather sig-
nificant speed up. This clearly indicates that the CF
algorithm is highly efficient for practica implementa-
tion. Our two- and three-level parallel computation
strategies aso improve the efficiency of paralel com-
putation. however, it should be emphasized that, for

11

large N, the parallel CF algorithm wit] result in even
greater speedup in the computation. Currently, we
are implementing the CF algorithm for larger prob-
lems (N = 16) on JPL’sHypercube.

Acknowledgments

The research of the first author was performed al
the Jet Propulsion Laboratory, CaliforniaInstitute of
Technology, under contract with the National Aero-
nautics and Space Administration (NASA),

REFERENCES

L A. Fijany, “ParallelO(LogN) Algorithms for
Open- and Closed-Chain Rigid Multibody Sys
tems Based on a New Mass Matrix Factoriza-
tion Technique,” Proc. 5th NASA Workshop on
Aerospace Computational Control, Aug. 1992.

2. A. Fijany, “New Factorization Techniques and
Parallel O(LogN) algorithms for Computation
of Single Closed-Chain Robot Manipulators For-
ward Dynamics,” Submitted to IEEE Trans.
Syst..\an, and Cybern.. Also, in JPl, Engineer-
ing Memo, EM 343-1315-93, July 1993,

3. J.Y.S.Luh.M.W. Waker, and R.P.C. Paul, “On-
Line Computational Scheme for Mechanical Ma
nipulator,” ASME J. Dynamic Syst.,Meas., Con-
trol, Vol. 102, pp. 69-76, June 1980.

4. M.W . Walker and D.E. Orin, “Efficient Dynamic
Computer Simulation of Robotic Mechanism, ”
ASMEJ. Dynamic Systems, Measurement, and
Control, Vol. 104, pp. 205-211, 1982,

5. D.E.Rosenthal, “Triangularization of Equations
of Motion for Robotic Systems, ” J. Guidance,
Control, and Dynamics Vol. 11, pp. 278-281,
1988.

6. R. Featherstone, “The Calculation of Robot Dy-
namics Using Articulated- Body Inertia” Int. J.
Robotics Research, Vol. 2(I), pp. 13-30, 1983.

7. G. Rodriguez, “Kalman Filtering, Smoothing and
Recursive Robot Arm Forward and Inverse Dy-
namics,” 1EEE J. Robotics and Automation, Vol.
RA-3(6), pp. 624-639, Dec. 1987.

8. G. Rodriguez and K.Kreutz-Delgado, ‘‘Spatial
Operator Factorization and Inversion of the Ma-
nipulator Mass Matrix,” IEEE Trans. Robotics
and Automation, Vol. RA-8(1), pp. 65-76, Feb.
1992.

10.

11.

12.

13.

14.

15.

16.

D. Rosenthal, “Order N Formulation for Equa-
tions of Motion of Multi body Systems, ” Proc.
SDIO/NASA Workshop on Multibody Simula-
tion, pp. 1122-1150, Sept. 1987.

A. Fijany and A.K.Bejczy, “Techniques for Paral-
lel Computation of Mechanical Manipulator Dy -
namics.Part 1I: Forward Dynamics, ” in Advances
i Control and Dynamic Systems, Vol. 40: Ad-
vances i Robotic Systems Dynamics and Con-
trol C.'T. Leondes (Ed,), pp. 357-410, Academic
Press, March 1991.

A. Fijany, I. Sharf, and G. M.T. D’Eleuterio,
“Paralel O(LogN) Algorithms for Computation
of Manipulator Forward Dynamics, ” Submitted
to ILEE Trans. Robotics and Automation,

A. Fyany, “Parallel O(LogN) Algorithms for
Rigid Multibody Dynamics, " JPL Engineering
Memo,EM 343-W-1258, Aug. 1992,

A. Fijany and R.E.Scheid, “Fast Parallel pre-
conditioned Conjugate Gradient Algorithms for
Computation of Manipulator Forward Dynam-
ics,” To appear in J. of Intelligent & Robotic Sys-
tems. Theory & Application, 1993. Also, in JPL
Eng. Memo, EM 343-91-1196, Aug. 1991,

1. Sharf, Parallel Simulation Dynamics for Open
Multibody Chains, Ph.D.Diss., Univ. of Toronto,
Canada, Nov. 1990.

I. Sharf and G.M.T. 1) ’Eleuterio, “Parallel Sim-
ulation Dynamics for Rigid Multibody Chains, ”
Proc. 12th Biennial ASME Conf. on Mechani-
cal Vibration and Noise, Montreal, Canada, Sept.
1989.

P.C.Hughes and G.B. Sincarsin, “Dynamics of
an Elastic Multibody Chain: Part B—Global Dy -

12

17

19.

20.

21.

22,

23.

24,

namics,” Dynamics and Stability of Systems, Vol.
4(3&4),pp. 227-244, 1989,

C.J. Damaren and G.M.T. D’Eleuterio, “On
the Relationship between Discrete-Time Opti-
mal Control and Recursive Dynamics for Elastic
Multibody Chains, " Contemporary Mathematics,
Vol. 97, pp. 61-77, 1989.

. R.W. Cottle, “Manifestation of Schur Comple-

ment ,* Linear Algebra and its Application, Vol.
8, pp. 189-211, 1974.

D. Heller, “Some Aspects of the Cyclic Reduction
Algorithm for Block Tridiagonal Linear Systems,”
SIAM J. Numer. Ana., Vol. 13(4), 1976.

R.W.Hockney and C.R. Jesshope, Parallel Com-
puters, Adam Hilger Ltd, 1981.

G, Il, Golub and C.F. Van Loan, Matriz Com-
putations 2nd Edition, The John Hopkins Univ.
Press, 1989.

C.S.G. Lee and P.R. Chang, “Efficient Parallel
Algorithms for Robot Inverse Dynamics Compu-
tation ,* IEEE Trans. Syst., Man, and Cybern.,
Vol. 16(4), pp. 532-542, July/August 1986.

A . Fijany, N. Bagherzadeh,and G. Kwan,
“Communication Efficient Cyclic Reduction Al-
gorithms for Parallel Solution of Block Tridiago-

nal System, ” Submitted to Information Process-
ing Letters.

A. Fijany and A.K.Bejczy, “ASPARC: An Algo-
rithmically Specialized Parallel Architecture for
Robotics Computations,” in Parallel Computa-
tion Systems for Robotics: Algorithms and Archi-
tectures, A. Fijany and A.K.Bejczy (Eds.), World
Scientific Pub., 1992.

